Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.836
Filtrar
1.
Environ Int ; 186: 108609, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38579452

RESUMEN

Recently, evidence of aromatic amine antioxidants (AAs) existence in the dust of the electronic waste (e-waste) dismantling area has been exposed. However, there are limited studies investigating occupational exposure and toxicity associated with AAs and their transformation products (p-phenylenediamines-quinones, i.e., PPD-Qs). In this study, 115 dust and 42 hand wipe samples collected from an e-waste recycling industrial park in central China were analyzed for 19 AAs and 6 PPD-Qs. Notably, the median concentration of ∑6PPD-Qs (1,110 ng/g and 1,970 ng/m2) was significantly higher (p < 0.05, Mann-Whitney U test) than that of ∑6PPDs (147 ng/g and 34.0 ng/m2) in dust and hand wipes. Among the detected analytes, 4-phenylaminodiphenylamine quinone (DPPD-Q) (median: 781 ng/g) and 1,4-Bis(2-naphthylamino) benzene quinone (DNPD-Q) (median: 156 ng/g), were particularly prominent, which were first detected in the e-waste dismantling area. Occupational exposure assessments and nuclear receptor interference ability, conducted through estimated daily intake (EDI) and molecular docking analysis, respectively, indicated significant occupational exposure to PPD-Qs and suggested prioritized Liver X receptors (LXRs) disruption potential of PPDs and PPD-Qs. The study provides the first evidence of considerable levels of AAs and PPD-Qs in the e-waste-related hand wipe samples and underscores the importance of assessing occupational exposure and associated toxicity effects.


Asunto(s)
Antioxidantes , Polvo , Residuos Electrónicos , Exposición Profesional , Reciclaje , Exposición Profesional/análisis , Humanos , Polvo/análisis , China , Quinonas/análisis , Aminas/análisis
2.
Sci Total Environ ; 926: 172045, 2024 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-38554968

RESUMEN

Bioaccessibility of halogenated flame retardants (HFRs) and organophosphorus esters (OPEs) is necessarily investigated to provide more accurate risk assessment and information about absorption behavior of these pollutants. In this study, total and bioaccessible concentrations of HFRs (including legacy and alternative substances) and OPEs were determined in settled dust samples collected from Vietnamese e-waste and end-of-life vehicle (ELV) processing areas. Concentrations of both HFRs and OPEs were significantly higher in the e-waste dust than ELV dust. Bioavailability of HFRs and OPEs in dust was determined by using an in vitro assay with human-simulated digestive fluids, dialysis membrane, and Tenax® TA sorptive sink. Bioaccessibility of HFRs was markedly lower than that of OPEs, which could be largely due to higher hydrophobicity of HFRs compared to OPEs. Bioaccessibility of almost hydrophobic compounds were markedly lower in the e-waste dust (containing micronized plastic debris) than in the ELV dust (containing oily materials), suggesting the influence of specific dust matrices on pollutant bioaccessibility. Although the daily uptake doses of selected HFRs and OPEs from dust were markedly higher in the e-waste sites compared to the ELV sites, the direct exposure risk was not significant. Our results suggest that bioaccessibility can partly explain the differences between dust and uptake profiles, which may relate to accumulation profiles of HFRs and OPEs in human samples.


Asunto(s)
Contaminación del Aire Interior , Residuos Electrónicos , Contaminantes Ambientales , Retardadores de Llama , Humanos , Polvo/análisis , Monitoreo del Ambiente/métodos , Retardadores de Llama/análisis , Vietnam , Residuos Electrónicos/análisis , Contaminación del Aire Interior/análisis , Organofosfatos/análisis , Ésteres/análisis , China
3.
J Environ Manage ; 356: 120652, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38531139

RESUMEN

The increasing volume of electronic waste (e-waste) poses significant challenges for efficient collection in China. Despite many measures were taken over the past two decades, the e-waste collection rate was still not high. To this end, the Chinese government issued a new policy, the collection target responsibility (CTR) policy. Under the CTR policy, however, it is essential for participants to know how to share the responsibility of collection and how much reasonable targets are set to ensure the efficiency of the collection models. Therefore, the purpose of this paper is to explore the determination of optimal collection targets and the corresponding performance from the perspective of responsibility sharing to support the successful implementation of the CTR. Firstly, the study focuses on participants including the government, manufacturers, and recyclers, and develops three CTR models, independent collection model, government cost-sharing model, and enterprise collaboration model. Secondly, collection target equations for each model are established by employing dynamic differential game analysis, and corresponding collection performances are derived. Thirdly, through practical case simulations, the evolution of collection performance is dynamically analyzed to determine reasonable collection targets for the three models, as 23.8%, 32.3%, and 34.4%, respectively. The findings highlight the effectiveness of CTR in improving e-waste collection targets and performance, with the highest levels attained when the collection responsibilities are shared by government cost-sharing and enterprise collaboration. This study provides theoretical support for setting reasonable collection targets under CTR, and assists decision-makers in developing targeted CTR implementation measures.


Asunto(s)
Residuos Electrónicos , Administración de Residuos , Humanos , Reciclaje , China
4.
Waste Manag ; 178: 351-361, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38430749

RESUMEN

The traditional hydrometallurgy technology has been widely used to recover precious metals from electronic waste. However, such aqueous recycling systems often employ toxic/harsh chemicals, which may cause serious environmental problems. Herein, an efficient and environment-friendly method using a deep eutectic solvent (DES) mixed system of choline chloride-ethylene glycol-CuCl2·2H2O is developed for gold (Au) recovery from flexible printed circuit boards (FPCBs). The Au leaching and precipitation efficiency can reach approximately 100 % and 95.3 %, respectively, under optimized conditions. Kinetic results show that the Au leaching process follows a nucleation model, which is controlled by chemical surface reactions with an apparent activation energy of 80.29 kJ/mol. The present recycling system has a much higher selectivity for Au than for other base metals; the two-step recovery rate of Au can reach over 95 %, whereas those of copper and nickel are < 2 %. Hydrogen nuclear magnetic resonance spectroscopy (HNMR) and density functional theory (DFT) analyses confirm the formation of intermolecular hydrogen bonds in the DES mixed system, which increase the system melting and boiling points and facilitate the Au leaching process. The Au leaching system can be reused for several times, with the leaching efficiency remaining > 97 % after five cycles. Moreover, ethylene glycol (EG) and choline chloride (ChCl) act as aprotic solvents as well as coordinate with metals, decreasing the redox potential to shift the equilibrium to the leaching side. Overall, this research provides a theoretical and a practical basis for the recovery of metals from FPCBs.


Asunto(s)
Residuos Electrónicos , Oro , Oro/química , Colina , Cobre/química , Reciclaje/métodos , Residuos Electrónicos/análisis , Glicoles de Etileno
5.
Sci Total Environ ; 923: 171495, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38453087

RESUMEN

N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) and its derivative 6PPDQ have been detected in various environmental media, with harmful consequences for both ecosystems and biological health. However, the distribution of 6PPD and 6PPDQ in areas around e-waste recycling areas is currently unknown. We collected soil and dust samples from areas around a traditional e-waste recycling zone, an emerging recycling park, and a reference area. Higher levels of 6PPD were found in dust from residential areas around the traditional e-waste recycling zone compared to the reference area (median: 108.99 versus 33.57 ng/g, P < 0.01). Lower levels of 6PPDQ were detected in dust samples from around the emerging e-waste recycling parks compared to traditional e-waste recycling zones (median: 15.40 versus 46.37 ng/g, P < 0.05). The median concentrations of 6PPD and 6PPDQ were higher in the dust samples than in the soil samples (P < 0.001). The concentrations of 6PPD and 6PPDQ in the dust and soil varied seasonally, with the highest total concentrations occurring in the winter. Results from a multiple linear regression analysis indicate that 6PPDQ is negatively correlated with temperature and positively correlated with 6PPD, O3, and radiation. This study confirms that e-waste is a potential contributor to 6PPD and 6PPDQ. In residential areas, 6PPD and 6PPDQ are more likely to accumulate in dust than in soil. The emerging e-waste recycling parks have greatly improved the local 6PPDQ pollution situation. Further studies are necessary to understand the distribution of newly found substances in various settings.


Asunto(s)
Polvo , Residuos Electrónicos , Polvo/análisis , Suelo , Residuos Electrónicos/análisis , Ecosistema , Reciclaje/métodos , China
6.
PLoS One ; 19(3): e0297408, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38446793

RESUMEN

This study examines the impact of government ideology on e-waste recycling in 30 European countries from 2008 to 2018. This study seeks to enhance the e-waste recycling literature by introducing a novel determinant, examining the unexplored relationship between government ideology and e-waste recycling rates in European countries, thus addressing a substantial research gap. Utilizing panel quantile regression on an unbalanced dataset, the findings revealed that the increased influence of right-wing parties in government was associated with lower e-waste recycling rates. Conversely, greater influence of left-wing or center-wing parties was correlated with higher recycling rates across all quantiles analyzed. The estimation results remain robust when different indicators of government ideology were employed. Overall, the study underscores the importance of political ideology in shaping e-waste recycling policies and environmental sustainability efforts. It emphasizes that effective policies should align with the political commitment of the governing body.


Asunto(s)
Residuos Electrónicos , Unión Europea , Europa (Continente) , Gobierno , Políticas
7.
Waste Manag ; 179: 192-204, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38484540

RESUMEN

Research to prevent releases of brominated flame retardants listed as persistent organic pollutants by the Stockholm Convention (POP-BFRs) was conducted through an international cooperation project in Colombia. Six waste electrical and electronic equipment (WEEE) management facilities implemented: 1) sorting e-waste by product type and color (black, white, and other; henceforth called chromoproducts), 2) sampling test products and their plastic fraction (called sets, separated by polymer type), 3) monitoring mass, bromine and antimony contents by hand-held X-ray fluorescence (XRF) and POP-BFRs such as polybrominated diphenyl ethers (PBDEs) by gas chromatography and mass spectrometry (GC-MS), and 4) differentiated treatment according to categories that used the Restriction of Hazardous Substances in Electrical and Electronic Equipment Directive (RoHS) hazardousness threshold of 1000 mg ∑PBDEs/kg. This scheme led to the proposal of a methodology for WEEE management called the "chromoproduct approach". 994,230 products were managed and grouped into 222 chromoproducts, from which 77 were analyzed: 50 below RoHS hazardousness (BRH), 16 above RoHS hazardousness (ARH), and 11 unknown RoHS hazardousness (URH). XRF indicators using bromine and antimony contents could rule out pollution in BRH chromoproducts; however, categorization still required GC-MS. One ARH plastics sample had 3620 mg ∑PBDEs/kg, while no POP-BFRs were found in the BRH plastics sample. The implementation of the chromoproduct approach traced 153.6 tonnes of ARH plastics. BRH plastics composition was estimated and used in a pilot-scale closed-loop economic activity. The chromoproduct approach seems promising for avoiding POP-BFR releases and promoting the upcycling of recyclable e-waste plastics.


Asunto(s)
Residuos Electrónicos , Retardadores de Llama , Plásticos/análisis , Residuos Electrónicos/análisis , Colombia , Antimonio/análisis , Bromo/análisis , Residuos/análisis , Retardadores de Llama/análisis , Éteres Difenilos Halogenados/análisis
8.
Waste Manag ; 179: 245-261, 2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38493610

RESUMEN

This study explores the extraction of metals from spent mobile phone printed circuit boards (SMPhPCBs) to address environmental and resource depletion concerns. The challenges in metal recovery from SMPhPCBs arise due to their complex composition and high metal content. While previous research has primarily focused on using bio-cyanide, bio-sulfate, and bio-ferric compounds from acidophilic bacteria, the potential of bio-oxalic acid for SMPhPCBs treatment and the alteration of their complex structure has not yet been explored. Additionally, this study suggests evaluating the untapped potential of Aspergillus niger in oxalic acid production through mixed cultures with bacteria, marking a pioneering approach. A unique culture of Bacillus megaterium and A. niger was created, inducing bio-stress by bacterial metabolites, including gluconic acid (2683 mg/l) and live/dead bacterial cells in a medium with glucose deficiency. Results demonstrated reducing sugar consumption and oxalic acid over-production in mixed cultures compared to pure cultures, ranging from 1350 to 4951 mg/l at an initial glucose concentration (IGC) of 10 g/l and 4276 to 7460 mg/l at IGC 20 g/l. This over-production is attributed to proposed fungal signaling mechanisms to bacteria. Metal extraction using organic acids and siderophores at 10 g/l pulp density, 24 h, and 60 °C yielded Mn (100 %), Pt (100 %), Pd (70.7 %), Fe (50.8 %), Co (48.3 %), Al (21.8 %), among others. The final valuable residue containing copper, gold, and silver holds potential for future recycling. The study concludes with XRD and FTIR analyses to assess the bioleaching effect on the bio-leached powder.


Asunto(s)
Cobre , Residuos Electrónicos , Oro , Reciclaje/métodos , Ácido Oxálico/metabolismo , Glucosa
9.
Waste Manag ; 178: 301-310, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38422683

RESUMEN

While near-infrared (NIR) spectroscopy in post-consumer waste electrical and electronic equipment (WEEE) recycling accurately separates white or clear polymers, 40% containing dark plastics, termed 'unsortable WEEE,' are excluded from sorting lines and therefore incinerated or landfilled, causing environmental concerns. This study investigates the potential of using non-reactive and reactive copolymers as compatibilizers to enhance the performance of unsortable WEEE plastics free of brominated flame retardants. To the best of our knowledge, this is the first time that such copolymers have been explored as a solution for improving the compatibility of unsortable WEEE polymer blends. Initial trials with 4% of styrene-ethylene-butylene-styrene copolymer (SEBS-13) and SEBS-30-g-(maleic anhydride) copolymer (SEBS-30-g-MA MA) as compatibilizers showed insufficient results compared to virgin commercial polymers. However, the addition of higher concentrations of compatibilizers (i.e. up to 20 wt%) and the use of a SEBS having a higher styrene content (i.e. SEBS-30) improved the mechanical properties of the material, causing it to transition from brittle to ductile. This behavior was found more pronounced for the 20% non-reactive SEBS-30, for which the SEM analysis showed reduced phase segregation and revealed a more homogeneous fracture surface. This was further supported by Differential Scanning Calorimetry (DSC) analysis, which showed evidence of an interaction between one or more polymer phases. With a room temperature performance equivalent to that of virgin conventional polymers, the SEBS-30 compatibilization approach has made it possible to consider using unsortable WEEE streams as recycled materials in commercial applications.


Asunto(s)
Residuos Electrónicos , Residuos Electrónicos/análisis , Plásticos/análisis , Reciclaje/métodos , Polímeros , Poliestirenos/análisis
10.
Environ Pollut ; 346: 123645, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38402939

RESUMEN

Brominated flame retardants (BFRs) are bromine-bearing additives added to the polymeric fraction in various applications to impede fire ignition. The Stockholm Convention and various other legislations abolished legacy BFRs usage and hence, the so-called novel BFRs (NBFRs) were introduced into the market. Recent studies spotlighted their existence in household dust, aquifers and aquatic/aerial species. Co-pyrolysis of BFRs with metal oxides has emerged as a potent chemical recycling approach that produces a bromine-free stream of hydrocarbon. Herein, we investigate the debromination of two prominent two NBFRs; namely tetrabromobisphenol A 2,3-dibromopropyl ether (TD) and tetrabromobisphenol A diallyl ether (TAE) through their co-pyrolysis with zinc oxide (ZnO) and franklinite (ZnFe2O4). Most of the zinc content in electrical arc furnace dust (EAFD) exists in the form of these two metal oxides. Conversion of these metal oxides into their respective bromides could also assist in the selective extraction of the valuable zinc content in EAFD. The debromination potential of both oxides was unveiled via a multitude of characterization studies to analyze products (char, gas and condensates). The thermogravimetric analysis suggested a pyrolytic run up to 500 °C and the TAE treatment with ZnO produced only a trivial amount of brominated compounds (relative area, 0.83%). Phenol was the sole common compound in condensable products; potentially formed by the ß-scission debromination reaction from the parental molecular skeleton. Inorganic compounds and methane were the major constituents in the gaseous products. The pyrochar analyses confirmed the presence of metal bromides retained in the residue, averting the bromine release into the atmosphere. The ion chromatography analysis portrayed <8% of HBr gas release into the atmosphere upon pyrolysis with ZnO. The ZnO dominance herein envisaged further probes into other spinel ferrites in combating brominated polymers.


Asunto(s)
Residuos Electrónicos , Retardadores de Llama , Hidrocarburos Bromados , Bifenilos Polibrominados , Óxido de Zinc , Retardadores de Llama/análisis , Residuos Electrónicos/análisis , Bromo , Bromuros , Reciclaje/métodos , Polímeros , Zinc/análisis , Polvo , Éteres , Hidrocarburos Bromados/análisis
11.
Environ Sci Pollut Res Int ; 31(14): 21962-21972, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38400963

RESUMEN

In the context of sustainable development, potentially toxic element (PTE) contamination of soil and large-scale disposal of sludge are two major environmental issues that need to be addressed urgently. It is of great significance to develop efficient and green technologies to solve these problems simultaneously. This study investigated the effects of a 5% addition of thermally treated sludge residues (fermentation and pyrolysis residues) in synergy with L. perenne on soil organic matter, mineral nutrients, PTE speciation, and PTE uptake and transport by L. perenne in an e-waste-contaminated soil through pot experiments. The results showed that the thermally treated sludge residues significantly increased soil electrical conductivity, cation exchange capacity, organic matter, available phosphorus, and exchangeable potassium contents. New PTE-containing crystalline phases were detected, and dissolved humic substances were found. Sludge fermentation residue significantly increased dissolved organic matter content, whereas sludge pyrolysis residue showed no significant effect. The combination of thermally treated sludge residues and L. perenne increased the residual fractions of Cu, Zn, Pb, and Cd. The thermally treated sludge residues promoted L. perenne growth, increasing fresh weight, plant height, and phosphorus and potassium uptake. The uptake of Cu, Zn, Pb, and Cd by L. perenne was significantly reduced. This approach has the potential for applications in the ecological restoration of e-waste-contaminated soils.


Asunto(s)
Residuos Electrónicos , Metales Pesados , Contaminantes del Suelo , Metales Pesados/análisis , Suelo/química , Cadmio/análisis , Aguas del Alcantarillado/química , Disponibilidad Biológica , Plomo , Contaminantes del Suelo/análisis , Fósforo , Potasio
12.
Chemosphere ; 352: 141435, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38346511

RESUMEN

Tremendous amounts of electric and electronic wastes (e-waste) are generated daily, and their indiscriminate disposal may cause serious environmental pollution. The recovery of non-metallic materials from e-waste is a strategy to not only reduce the volume of e-waste but also avoid pollutant emissions produced by indiscriminate disposal of e-waste. Pyrolysis, sub/supercritical water treatment, chemical dissolution, and physical treatment (e.g., ball milling, flotation, and electrostatic separation) are available methods to recover useable non-metallic materials (e.g., resins, fibers, and various kinds of polymers) from e-waste. The e-waste-derived materials can be used to manufacture a large variety of industrial and consumer products. In this regard, this work attempts to compile relevant knowledge on the technologies that derive utilizable materials from different classes of e-waste. Moreover, this work highlights the potential of the e-waste-derived materials for various applications. Current challenges and perspectives on e-waste upcycling to useable materials are also discussed.


Asunto(s)
Residuos Electrónicos , Contaminantes Ambientales , Purificación del Agua , Residuos Electrónicos/análisis , Polímeros , Electricidad Estática , Residuos , Reciclaje
13.
Sci Total Environ ; 920: 170991, 2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38365028

RESUMEN

Heavy metal-rich environments can promote the selection of metal-resistance genes (MRGs) in bacteria, often leading to the simultaneous selection of antibiotic-resistance genes (ARGs) through a process known as co-selection. To comprehensively evaluate the biological pollutants at electronic-waste (e-waste) recycling facilities, air, soil, and river samples were collected at four distinct Swiss e-waste recycling facilities and analyzed for ARGs, MRGs, mobile genetic elements (MGEs), endotoxins, and bacterial species, with correlations drawn to heavy metal occurrence. To our knowledge, the present work marks the first attempt to quantify these bio-pollutants in the air of e-waste recycling facilities, that might pose a significant health risk to workers. Although ARG and MRG's profiles varied among the different sample types, intl1 consistently exhibited high relative abundance rates, identifying it as the predominant MGE across all sample types and facilities. These findings underscore its pivol role in driving diverse bacterial adaptations to extreme heavy metal exposure by selection and dissemination of ARGs and MRGs. All air samples exhibited consistent profiles of ARGs and MRGs, with blaTEM emerging as the predominant ARG, alongside pbrT and nccA as the most prevalent MRGs. However, one facility, engaged in batteries recycling and characterized by exceptionally high concentrations of heavy metals, showcased a more diverse resistance gene profile, suggesting that bacteria in this environment required more complex resistance mechanisms to cope with extreme metal exposure. Furthermore, this study unveiled a strong association between gram-negative bacteria and ARGs and less with MRGs. Overall, this research emphasizes the critical importance of studying biological pollutants in the air of e-waste recycling facilities to inform robust safety measures and mitigate the risk of resistance gene dissemination among workers. These findings establish a solid foundation for further investigations into the complex interplay among heavy metal exposure, bacterial adaptation, and resistance patterns in such distinctive ecosystems.


Asunto(s)
Residuos Electrónicos , Contaminantes Ambientales , Metales Pesados , Humanos , Antibacterianos/farmacología , Genes Bacterianos , Ecosistema , Bacterias/genética , Metales Pesados/toxicidad
14.
J Environ Manage ; 354: 120417, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38382439

RESUMEN

Unsustainable production and consumption are driving a significant increase in global electronic waste, posing substantial environmental and human health risks. Even in more developed nations, there is the challenge of low collection rates. In response, we integrate offline and online trading systems and design a material efficiency strategy for used cell phones. We propose a new multi-objective optimization framework to maximize profit, carbon emissions reduction, and circularity in the process of recycling and treatment. Considering multi-period, multi-product, multi-echelon features, as well as price sensitive demand, incentives, and qualities, we established a new multi-objective mixed-integer nonlinear programming optimization model. An enhanced, Fast, Non-Dominated Solution Sorting Genetic Algorithm (ASDNSGA-II) is developed for the solution. We used operational data from a leading Chinese Internet platform to validate the proposed optimization framework. The results demonstrate that the reverse logistics network designed achieves a win-win situation regarding profit and carbon emission reduction. This significantly boosts confidence and motivation for engaging in recycling efforts. Online recycling shows robust profitability and carbon reduction capabilities. An effective coordination mechanism for pricing in both online and offline channels should be established, retaining offline methods while gradually transitioning towards online methods. To increase the collection rate, it is essential to jointly implement a transitional strategy, including recycling incentives and subsidy policies. Additionally, elevating customer environmental awareness should be viewed as a long-term strategy, mitigating the cost of increasing collection rates during the market maturity stage (high collection rates).


Asunto(s)
Teléfono Celular , Residuos Electrónicos , Humanos , Reciclaje/métodos , Costos y Análisis de Costo , Carbono
15.
Environ Monit Assess ; 196(3): 308, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407739

RESUMEN

Management of solid waste from rural hospitals is amongst problems affecting Zimbabwe due to diseases, population, and hospital increase. Solid waste from rural hospitals is receiving little attention translating to environmental health problems. Therefore, 101 secondary sources were used to write a paper aiming to proffer a hierarchical model to achieve sustainable solid waste management at rural hospitals. Rural hospitals' solid waste encompasses electronic waste, sharps, pharmaceutical, pathological, radioactive, chemical, infectious, and general waste. General solid waste from rural hospitals is between 77.35 and 79% whilst hazardous waste is between 21 and 22.65%. Solid waste increase add burden to nearly incapacitated rural hospitals. Rural hospital solid waste management processes include storage, transportation, treatment methods like autoclaving and chlorination, waste reduction alternatives, and disposal. Disposal strategies involve open pits, open burning, dumping, and incineration. Rural hospital solid waste management is guided by legislation, policies, guidelines, and conventions. Effectiveness of legal framework is limited by economic and socio-political problems. Rural hospital solid waste management remain inappropriate causing environmental health risks. Developed hierarchical model can narrow the route to attain sustainable management of rural hospitals' solid waste. Proposed hierarchical model consists of five-layered strategies and acted as a guide for identifying and ranking approaches to manage rural hospitals' solid waste. Additionally, Zimbabwean government, Environmental Management Agency and Ministry of Health is recommended to collaborate to provide sufficient resources to rural hospitals whilst enforcing legal framework. Integration of all hierarchical model's elements is essential whereas all-stakeholder involvement and solid waste minimisation approaches are significant at rural hospitals.


Asunto(s)
Residuos Electrónicos , Residuos Sólidos , Zimbabwe , Monitoreo del Ambiente , Hospitales
16.
Int J Hyg Environ Health ; 257: 114340, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38422602

RESUMEN

BACKGROUND: Electronic waste (e-waste) recycling activities release toxic metals, which pose substantial hazard to the environment and human health. We evaluated metal concentrations in biological and environmental samples, and examined the associations between biological lead (Pb), cadmium (Cd), and mercury (Hg) with soil and dust metals, and other possible determinants, among populations exposed and non-exposed to e-waste in Bangladesh. METHODS: A total of 199 e-waste workers and 104 non-exposed individuals were recruited. We measured blood Pb (BPb) and Cd (BCd) concentrations and total Hg (THg) from hair samples. Data were collected on occupational, and behavioral factors. We fitted an elastic net regression (ENET) to model the relationship between a set of influencing factors and metals as outcome variables while controlling for potential covariates. RESULTS: The median concentrations of BPb (11.89 µg/dL) and BCd (1.04 µg/L) among exposed workers were higher than those of non-exposed workers (BPb: 3.63 µg/dL and BCd: 0.83 µg/L respectively). A 100 ppm increment in soil Pb level was associated with an increase in ln-Pb (transformed) in blood (ß = 0.002; 95% CI = 0.00, 0.02). Similarly, ln-BCd level increased (ß = 0.02; 95% CI = 0.001, 0.07) with every ppm increase in dust Cd level. The number of years worked in e-waste activities was associated with elevated ln-BPb (ß = 0.01; 95% CI = 0.01, 0.02) and ln-BCd levels (ß = 0.003; 95% CI = 0.00, 0.05). Smoking significantly contributed to elevated levels of ln-BCd (ß = 0.46; 95% CI = 0.43, 0.73). An increment of 100 kg of e-waste handling per week led to an increase in ln-BPb levels (ß = 0.002; 95% CI = 0.00, 0.01), while respondents knowledge about adverse impact on e-waste reduced the ln-BPb level (ß = -0.14; 95% CI = -0.31, -0.03). Fish consumption frequency had a positive association with THg in hair. CONCLUSIONS: Our data show the need for workplace controls to reduce exposure to Pb and Cd with a broader view of exposure source taken.


Asunto(s)
Residuos Electrónicos , Mercurio , Humanos , Cadmio , Plomo , Polvo/análisis , Bangladesh , Reciclaje , Cabello/química
17.
Chemosphere ; 352: 141408, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38336041

RESUMEN

Waste liquid crystal displays (LCDs) are one of the most substantial and rapidly growing e-waste streams that contain a notable amount of critical, precious, and toxic elements. This study presented a novel thermal-biological hybrid method for resource recovery from waste LCDs. Through the design of a multistage thermal treatment process with the addition of optimized 20 wt% B2O3 to waste, the LCD's glass structure was separated into two interconnected phases, resulting in the transfer of metals from the LCD's glass phase to the B2O3 phase that can solubilize in the acid solution. Following the thermal treatment step, the biometabolites of Aspergillus niger were used for bioleaching of In, Sr, Al, and As from the obtained thermally treated product. The optimal bioleaching parameters were a pulp density of 10 g/L, temperature of 70 °C, and leaching time of 2 days, which led to the highest extraction of 82.6% Al, 70.8% As, 64.5% In, and 36.2% Sr from thermally treated LCD waste, representing a multifold increase in Al, As, and Sr extraction levels compared to untreated waste. This study demonstrated that the proposed hybrid method could successfully overcome waste complexities and ensure effective element extraction from discarded LCDs.


Asunto(s)
Residuos Electrónicos , Cristales Líquidos , Metaloides , Cristales Líquidos/química , Indio/química , Residuos Electrónicos/análisis , Reciclaje/métodos
19.
J Hazard Mater ; 466: 133560, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38246054

RESUMEN

Global electronic waste (e-waste) generation continues to grow. The various pollutants released during precarious e-waste disposal activities can contribute to human oxidative stress. This study encompassed 129 individuals residing near e-waste dismantling sites in China, with elevated urinary concentrations of e-waste-related pollutants including heavy metals, polycyclic aromatic hydrocarbons (PAHs), organophosphorus flame retardants (OPFRs), bisphenols (BPs), and phthalate esters (PAEs). Utilizing an explainable machine learning framework, the study quantified the co-exposure effects of these pollutants, finding that approximately 23% and 18% of the variance in oxidative DNA damage and lipid peroxidation, respectively, was attributable to these substances. Heavy metals emerged as the most critical factor in inducing oxidative stress, followed by PAHs and PAEs for oxidative DNA damage, and BPs, OPFRs, and PAEs for lipid peroxidation. The interactions between different pollutant classes were found to be weak, attributable to their disparate biological pathways. In contrast, the interactions among congeneric pollutants were strong, stemming from their shared pathways and resultant synergistic or additive effects on oxidative stress. An intelligent analysis system for e-waste pollutants was also developed, which enables more efficient processing of large-scale and dynamic datasets in evolving environments. This study offered an enticing peek into the intricacies of co-exposure effect of e-waste pollutants.


Asunto(s)
Residuos Electrónicos , Contaminantes Ambientales , Retardadores de Llama , Metales Pesados , Hidrocarburos Policíclicos Aromáticos , Eliminación de Residuos , Humanos , Contaminantes Ambientales/toxicidad , Contaminantes Ambientales/análisis , Residuos Electrónicos/análisis , Metales Pesados/análisis , Estrés Oxidativo , Hidrocarburos Policíclicos Aromáticos/análisis , China
20.
Sci Total Environ ; 917: 170219, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38266721

RESUMEN

An LC-MS based analytical method was developed and validated for the simultaneous targeted analysis and suspect screening of plastic-related contaminants in e-waste impacted soils. Satisfactory recoveries (97 ± 13 %) were achieved using ultrasound-assisted extraction for 14/15 of the targeted analytes (7 bisphenols and 8 plasticizers) in a range of agricultural and non-agricultural soils. The method was applied to 53 soil samples collected in May 2015 in the region of Agbogbloshie (Ghana) at e-waste facilities (incl. Dump, trade, and burn sites), neighboring non-agricultural (incl. upstream, downstream, and community) and agricultural fields, and at two control agricultural sites away from e-waste recycling facilities. Bisphenol A (BPA) and bis(2-ethylhexyl) phthalate (DEHP) were the two dominant contaminants in e-waste soil (with concentrations up to 48.7 and 184 µg g-1, respectively), especially at the trade site, where e-waste was sorted and dismantled. The non-targeted workflow was successfully applied to identify additional plastic-related contaminants previously unreported in e-waste impacted soils, including bis(2-propylheptyl) phthalate, diisononyl phthalate, trioctyl trimellitate, 4-dodecylbenzenesulfonic acid, perfluorooctanesulfonic acid, perfluorobutanesulfonic acid, diphenyl phosphate, and triethylene glycol monobutyl ether. The agricultural soils surrounding the e-waste sites were also contaminated by plastic-related chemicals (especially DEHP), highlighting the impact of e-waste activities on the surrounding agricultural system.


Asunto(s)
Dietilhexil Ftalato , Residuos Electrónicos , Ácidos Ftálicos , Contaminantes del Suelo , Suelo , Ghana , Residuos Electrónicos/análisis , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...